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Abstract. We show that there are no examples of non-trivial products of

consecutive k-Fibonacci numbers that are rep-digits.

1. Introduction

In [9], F. Luca found all Fibonacci numbers which are rep-digits in base 10. That
is, all the solutions of the equation

Fn = d

(
10m − 1

9

)
, d ∈ {1, 2, . . . , 9},

where {Fn}n≥0 is the sequence of Fibonacci numbers given by F0 = 0, F1 = 1
and Fn+2 = Fn+1 + Fn for all n ≥ 0. The largest solution is F10 = 55. Since
then this result was generalised and extended in various directions. For example,
in [1], we found all Fibonacci numbers which are concatenations of two rep-digits.
In [14], Marques and Togbé showed that by imposing that a product of one or more
consecutive Fibonacci numbers being a rep-digit with at least two digits, one does
not get any extra interesting solutions. Namely, if

FnFn+1 · · ·Fn+`−1 = d

(
10m − 1

9

)
, d ∈ {1, 2, . . . , 9},

for positive integers `,m, n with m ≥ 2, then ` = 1 and n = 10. This prob-
lem was also investigated for the sequence of k-generalised Fibonacci numbers

{F (k)
n }n≥−(k−2) which is given by the recurrence F

(k)
n+k = F

(k)
n+k−1 + · · ·+F

(k)
n for all

n ≥ −(k − 2) with initial values 0, 0, . . . , 0, 1 (with k − 1 consecutive zeros), where

the value of 1 corresponds to n = 1; namely, F
(k)
1 = 1, and the remaining zeros are

in the past F
(k)
j = 0 for j ∈ {−(k − 2),−(k − 3), . . . , 0}. For example, when k = 2

this coincides with the Fibonacci sequence while when k = 3 this sequence is also
known as the sequence of Tribonacci numbers. In [3], the authors have shown that
if

F (3)
n F

(3)
n+1 · · ·F

(3)
n+`−1 = d

(
10m − 1

9

)
, d ∈ {1, 2, . . . , 9}

with m ≥ 2, then ` = 1 and n = 8; that is, F
(3)
8 = 44. The solution when only one

Tribonacci number is involved had been found earlier by Marques in [12]. In the
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same paper, Marques conjectured that this is the solution with the largest k of the
Diophantine equation

F (k)
n = d

(
10m − 1

9

)
, d ∈ {1, 2, . . . , 9},

in positive integer unknowns k, n,m again with m ≥ 2. That is, the only solutions
of the above Diophantine equation with m ≥ 2 are (k, n) = (2, 10), (3, 8) both of
which have m = 2. This was confirmed in [4]. In this paper, we bring together
these problems and look at products of consecutive k-generalised Fibonacci numbers
being a rep-digit. Our result is the following theorem.

Theorem 1.1. The only solutions of the Diophantine equation

(1) F (k)
n F

(k)
n+1 · · ·F

(k)
n+`−1 = d

(
10m − 1

9

)
, d ∈ {1, 2, . . . , 9}

with m ≥ 2 are (k, `, n) = (2, 1, 10), (3, 1, 8).

That is, by imposing that a product of one or more consecutive numbers of the
k-generalised Fibonacci sequence is a rep-digit with at least 2 digits, we get no
additional solutions from the ones we already knew about with k = 2, 3.

2. Preliminaries

In this section, we collect some facts about k-generalised Fibonacci numbers,
algebraic number theory and the theory of linear forms in logarithms of algebraic

numbers. One checks easily that the first k + 1 nonzero terms in F
(k)
n are powers

of 2, namely

F
(k)
1 = 1, F

(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F

(k)
k+1 = 2k−1.

Furthermore, the next two terms are F
(k)
k+2 = 2k− 1 and F

(k)
k+3 = 2k+1− 3 which are

odd. We start with the following lemma.

Lemma 2.1. The period of the k-generalised Fibonacci sequence modulo 2 is k+1.
Furthermore, in a period of length k + 1 there are exactly two 1s and k − 1 zeros.

Proof. For the first k + 1 values of n, namely n ∈ {−(k − 2),−(k − 1), . . . , 1, 2},
the k-generalised Fibonacci numbers are 0, 0, . . . , 0, 1, 1 and the next k + 1 terms
of the k-generalised Fibonacci sequence modulo 2 for n ∈ {3, 4, . . . , k + 3} are also
0, 0, . . . , 0, 1, 1, which finishes the proof of both statements because of the recurrence
of order k. �

Let us recall some known facts about the characteristic polynomial and Binet
formula for the k-generalised Fibonacci numbers. It is known that the character-

istic polynomial of the k–generalised Fibonacci numbers F (k) := {F (k)
n }n≥−(k−2),

namely

Ψk(x) := xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle. Let α := α(k)
denote that single root, which is located between 2

(
1− 2−k

)
and 2 (see [6]). This

is called the dominant root of F (k). To simplify notation, in our application we
shall omit the dependence of α on k. We shall use α(1), . . . , α(k) for all roots of
Ψk(x) with the convention that α(1) := α.
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We now consider, for an integer k ≥ 2, the function

fk(z) =
z − 1

2 + (k + 1)(z − 2)
for z ∈ C.(2)

With this notation, Dresden and Du presented in [6] the following “Binet–like”
formula for the terms of F (k):

F (k)
n =

k∑
i=1

fk(α(i))α(i)n−1
.(3)

It was proved in [6] that the contribution of the roots which are inside the unit
circle to the formula (3) is very small, namely that the approximation

(4)
∣∣∣F (k)

n − fk(α)αn−1
∣∣∣ < 1

2
holds for all n ≥ −(k − 2).

It was proved by Bravo and Luca in [4] that

αn−2 ≤ F (k)
n ≤ αn−1 holds for all n ≥ 1 and k ≥ 2.(5)

We continue with some notations and terminologies from algebraic number the-
ory.

Let η be an algebraic number of degree d with minimal primitive polynomial
over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)s are the conjugates of η.
Then the logarithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(

max{|η(i)|, 1}
))

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(η) = log max{|p|, q}. The following are some of the properties of the logarithmic
height function h(·), which will be used in the next section of this paper without
reference:

h(ηγ±1) ≤ h(η) + h(γ),(6)

h(ηs) = |s|h(η) (s ∈ Z).

We next present some useful lemmas that will be used in the next section on
this paper. The following lemma was proved by Bravo and Luca in [4].

Lemma 2.2. Let k ≥ 2, α be the dominant root of {F (k)
n }n≥(k−2), and consider

the function fk(z) defined in (2).

(i) The inequalities

1

2
< fk(α) <

3

4
, and |fk(α(i))| < 1, 2 ≤ i ≤ k

hold.
(ii) The logarithmic height of fk(α) satisfies h(fk(α)) < 3 log k.

The following lemma was proved in [5].
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Lemma 2.3. For 1 ≤ n < 2k/2 and k ≥ 10, we have

(7) F (k)
n = 2n−2 (1 + ζ) , where |ζ| < 5

2k/2
.

In order to prove our main result Theorem 1.1, we need to use a couple of times
a Baker–type lower bound for a nonzero linear form in logarithms of algebraic num-
bers. There are many such bounds the literature like that of Baker and Wüstholz
from [2]. We use the one of Matveev from [15]. Matveev proved the following
theorem, which is one of our main tools in this paper.

Theorem 2.1 (Matveev’s theorem). Let γ1, . . . , γt be positive real algebraic num-
bers in a real algebraic number field K of degree D, b1, . . . , bt be nonzero integers,
and assume that

(8) Λ := γb11 · · · γ
bt
t − 1,

is nonzero. Then

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

During the course of our calculations, we get some upper bounds on our variables
which are too large, thus we need to reduce them. To do so, we use some results from
the theory of continued fractions. Specifically, for a nonhomogeneous linear form in
two integer variables, we use a slight variation of a result due to Dujella and Pethő
(see [7], Lemma 5a). For a real number X, we write ||X|| := min{|X − n| : n ∈ Z}
for the distance from X to the nearest integer.

Lemma 2.4. Let M be a positive integer, p/q be a convergent of the continued
fraction of the irrational number τ such that q > 6M , and A,B, µ be some real
numbers with A > 0 and B > 1. If ε := ||µq|| −M ||τq|| > 0, then there is no
solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

The above lemma cannot be applied when µ = 0 (since then ε < 0). In this case,
we use the following criterion of Legendre (see Theorem 8.2.4 and top of page 287
in [16]).

Lemma 2.5 (Legendre). Let τ be a real number and x, y be integers such that

(9)

∣∣∣∣τ − x

y

∣∣∣∣ < 1

2y2
.

Then x/y = pk/qk is a convergent of τ . Furthermore,

(10)

∣∣∣∣τ − x

y

∣∣∣∣ ≥ 1

(ak+1 + 2)y2
.
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3. The proof of Theorem 1.1

3.1. Bounding `. Assume that (k, `, n,m) is a solution of equation (1) with m ≥ 2.
We may also assume that k ≥ 4 and that ` ≥ 2, since the remaining cases have
been treated elsewhere. We start with the following observation.

Lemma 3.1. We have ` ≤ 7 for k = 4 and ` ≤ 5 for k ≥ 5.

Proof. For the proof, we use the exponent of 2 in both sides of equation (1). For an
integer s, let ν2(s) be the exponent of 2 in the factorisation of s. In the right-hand
side of equation (1), we have

ν2

(
d

(
10m − 1

9

))
= ν2(d(10m−1 + · · ·+ 10 + 1)) = ν2(d) ≤ 3.

Thus, the exponent of 2 in the left–hand side of equation (1) is also at most 3.
Suppose that k ≥ 5 and ` ≥ 6. Since the period of the k-generalised Fibonacci
sequence modulo 2 is k + 1 ≥ 6, and in any period the sequence modulo 2 has
two consecutive 1 and k − 1 zeros, it follows that among the first 6 k-generalised

Fibonacci numbers F
(k)
n+j for j ∈ {0, 1, . . . , 5} in the left–hand side of (1), at most

two of them are odd and the rest (at least 4 of them) are even. This shows that
the left–hand side of equation (1) is a multiple of 16, a contradiction. A similar
argument proves that ` ≤ 7 when k = 4. �

3.2. Bounding n in terms of k. Next we find an upper bound for n in terms of
k. We assume that n ≥ 100. Combining (1) and (5), we get

10m−1 ≤ d

(
10m − 1

9

)
= F (k)

n F
(k)
n+1 · · ·F

(k)
n+`−1

< αn−1 · αn · · ·αn+`−2 = α`(n−1)+
`(`−1)

2 .

Since α < 10, we get

(11) m ≤ `(n− 1) + `(`− 1)/2.

Now, by estimate (4), it follows that we can write

F (k)
m = fk(α)αm−1 + em, where |em| < 1/2

for all m ≥ −(k−2). Using this for m = n, n+1, . . . , n+ `−1 in (1), and putting
a := fk(α) for simplicity, we get

F (k)
n · · ·F (k)

n+`−1 = (aαn−1 + en) · · · (aαn+`−2 + en+`−1)

= a`α`(n−1)+`(`−1)/2 + r(a, α, n, `),

where r(a, α, n, `) involves the part of the expansion of the previous line that
contains the product of powers of a, α and at least one of the errors ei, for
i = n, . . . , n+`−1. Thus, r(a, α, n, `) is the sum of at most 2`−1 ≤ 127 terms with
maximum absolute value at most (a`−1α`(n−1)+`(`−1)/2)/(2αn−1). Indeed this fol-
lows because ` ≤ 7 (see Lemma 3.1) and a > 1/2 > |ej | for j ∈ {n, n+1, . . . , n+`−1}
(see Lemma 2.2 (i)).

Combining the above equality with (1), we obtain

a`α`(n−1)+`(`−1)/2 − d

9
10m = −d

9
− r(a, α, n, `).



6 ADEL ALAHMADI, ALAA ALTASSAN, FLORIAN LUCA, AND HATOON SHOAIB

Dividing both sides of the above equality by a`α`(n−1)+`(`−1)/2 and taking the
absolute value, we conclude that∣∣∣∣( d

9a`

)
α−(`(n−1)+`(`−1)/2)10m − 1

∣∣∣∣ ≤ (
d

9
+ |r(a, α, n, `)|

)
· a−`α−(`(n−1)+`(`−1)/2)

<
(1 + 127a`−1α`(n−1)+`(`−1)/2/(2α−n+1))

a`α(`(n−1)+`(`−1)/2)

<
1 + 64a`−1α(n−1)(`−1)+`(`−1)/2

a`α`(n−1)+`(`−1)/2

<
128a`−1α(n−1)(`−1)+`(`−1)/2

a`α`(n−1)+`(`−1)/2

=
128

aαn−1
<

256

αn−1
.(12)

In the above, we used the fact that

64a`−1 > 64

(
1

2

)`−1

≥ 64

(
1

2

)6

= 1,

which follows from Lemma 2.2 (i) and Lemma 3.1. We next use Matveev’s theorem
to find a lower bound for the left–hand side of (12), with the parameters t := 3 and

(γ1, b1) := (d/(9a`), 1), (γ2, b2) := (α,−(`(n− 1) + `(`− 1)/2)), (γ3, b3) := (10,m).

The number field containing γ1, γ2, γ3 is L := Q(α), which has degree D := k. We

claim that Λ := γb11 γ
b2
2 γ

b3
3 − 1 6= 0. Otherwise, we get

a`α`(n−1)+`(`−1)/2 = d · 10m/9.

Conjugating the above relation by an automorphism σ which sends α(1) to α(i) for
some i ∈ {2, . . . , k}, and then taking absolute values on both sides of the resulting
equality, we obtain

|fk(α(i))|`|α(i)|`(n−1)+`(`−1)/2 = d · 10m/9,

which is not possible because the left–hand side is smaller than 1 while the right–
hand side is larger than 10 (since m ≥ 2). Thus, Λ 6= 0. Next,

h(γ1) ≤ h(d) + h(9a`) ≤ 2h(9) + `h(a) ≤ 2 log 9 + 21 log k < 24.2 log k;

h(γ2) =
1

k
logα <

log 2

k
;

h(γ3) = log 10 < 2.5.

In the above, we used the fact that k ≥ 4 in the right–most inequality concerning
h(γ1). Thus, we can take A1 := 24.2k log k, A2 := 2 and A3 := 2.5k. By (11),
and since `(n − 1) + `(` − 1)/2 ≤ 7n + 21 < 8n, we can take B := 8n. Applying
Matveev’s theorem, we get a lower bound for |Λ|, and comparing this with (12) we
get

exp
(
−1.8× 1013k4(log k)2(1 + log(8n))

)
<

256

αn−1
.

Taking logarithms in the above inequality, we get

(n− 1) logα− log 256 < 1.8× 1013k4(log k)2(1 + log(8n)).
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Since α ≥ α4 ≥ 1.92, we get

n ≤ 1 +
1.8× 1013k4(log k)2

log(1.92)
+

log 256

log 1.92

< 3× 1013k4(log k)2(1 + log 8n).

By using the fact that n ≥ 100, we get

8n ≤ 2.4× 1014k4(log k)2(log 8n)

(
1 +

1

log 8n

)
< 2.8× 1014k4(log k)2(log 8n).

Thus,

8n

log 8n
< 2.8× 1014k4(log k)2.

Using the fact that x/ log x < A implies x < 2A logA for A ≥ 10 (see Lemma 7 in
[8]), log k < k and k ≥ 4, we get that

8n ≤ 5.6× 1014k4(log k)2 log(2.8× 1014k4(log k)2)

< 5.6× 1014k4(log k)2(14 log 10 + log 2.8 + 6 log k)

< 5.6× 1014k4(log k)3

(
6 +

14 log 10 + log 2.8

log k

)
< 1.68× 1016k4(log k)3 (k ≥ 4),

which implies that

n < 2.1× 1015k4(log k)3.

Thus, we proved the following intermediary result.

Lemma 3.2. If (k, `, n,m) is a solution of equation (1) with n ≥ 100 and k ≥ 4,
then

(13) n < 2.1× 1015k4(log k)3.

3.3. Bounding k absolutely. We would like to apply Lemma 2.3 in order to

approximate F
(k)
n as in (7), but for that we need to be in the range n < 2k/2. The

inequality

2.1× 1015k4(log k)3 < 2k/2

holds for all k ≥ 180. Thus, by Lemma 3.2, the inequality n < 2k/2 is satisfied
when k ≥ 180. We work under this assumption in this section and we will cover
the range k < 180 later. Therefore we are in the hypothesis of Lemma 2.3, so we
can write

F
(k)
n+j = 2n+j−2(1 + ζj), with |ζj | <

5

2k/2
for j ∈ {0, . . . , `− 1}.

Multiplying the above estimates for j ∈ {0, 1, . . . , `− 1}, we get

F (k)
n · · ·F (k)

n+`−1 = 2n−2+(n+1−2)+···+(n+`−3)
`−1∏
j=0

(1 + ζj)

=: 2`n+`(`−5)/2(1 + ζ), where |ζ| < 70

2k/2
.
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The only fact to justify the above estimate is the upper bound on the absolute value
of the error which is denoted by ζ. This follows because

|ζ| =

∣∣∣∣∣∣∣∣
∑

I⊂{0,1,...,`−1}
I 6=∅

∏
j∈I

ζj

∣∣∣∣∣∣∣∣ ≤
∑

I⊂{0,1,...,`−1}
I 6=∅

∏
j∈I
|ζj | <

∑
I⊂{0,1,...,`−1}

I 6=∅

∏
j∈I

(
5

2k/2

)

=

(
1 +

5

2k/2

)`

− 1 < exp

(
5`

2k/2

)
− 1 ≤ exp

(
35

2k/2

)
− 1 <

70

2k/2
,

where in the last estimate we used the fact that ex − 1 < 2x for x ∈ (0, 1/2), with
x := 35/2k/2 (note that the inequality x < 1/2 holds for such x because k is large).
Thus, we write equation (1) as follows

2`n+`(`−5)/2(1 + ζ) = d

(
10m − 1

9

)
.

Thus,

2`n+`(`−5)/2 − d10m

9
= −2`n+`(`−5)/2ζ − d

9
.

Dividing both sides by 2`n+`(`−5)/2 and taking absolute values, we get∣∣∣∣1− (d9
)

2−(`n+`(`−5)/2)10m
∣∣∣∣ ≤ ∣∣∣∣ζ +

d

9× 2`n+`(`−5)/2

∣∣∣∣ < |ζ|+ 1

2`n+`(`−5)/2

≤ 70

2k/2
+

1

2`n+`(`−5)/2
<

71

2min{k/2,`n+`(`−5)/2} .(14)

Now let us show that the minimum in the exponent of 2 in the right–hand side of
the above estimate is k/2. Indeed, n ≥ k − 4, for if not, then n ≤ k − 5, therefore
n+`−1 ≤ n+6 ≤ k+1. Thus, the interval [n, n+`−1] is contained in the interval
[1, k + 1], and in this last interval all members of F (k) are powers of 2. Thus, the
left–hand side of (1) is a power of 2 which is a rep-digit with at least two digits m,
a contradiction. Hence, n ≥ k − 4, so that

`n+ `(`− 5)/2 ≥ 2(k − 4) + 2(2− 5)/2 = 2k − 11 > k/2,

where the last inequality holds because k ≥ 180. Thus, bound (14) becomes

(15)

∣∣∣∣1− (d9
)

2−(`n+`(`−5)/2)10m
∣∣∣∣ < 71

2k/2
.

In the left–hand side, we apply Matveev’s theorem. We first need to check that the
expression is non-zero. But if it were zero, we would get that

d10m

9
= 2`n+`(`−5)/2,

which is impossible by unique factorisation since 5 appears with exponent m ≥ 2
in the left–hand side but not on the right–hand side. So, we can apply Matveev’s
theorem with the parameters t := 3 and

(γ1, b1) := (d/9, 1), (γ2, b2) := (2,−(`n+ `(`− 5)/2)), (γ3, b3) := (10,m).

The number field containing γ1, γ2, γ3 is Q of degree D := 1. Next, we can take
A1 := log 9, A2 := log 2 and A3 := log 10. Since `n+ `(`− 5)/2 < `(n− 1) + `(`−
1)/2 ≤ 7n+ 21 < 8n (by the arguments from the previous application of Matveev’s
theorem in Subsection 3.2), we can take as previously B := 8n. Applying Matveev’s
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theorem, we get a lower bound for the left–hand side of (15), By comparing this
bound to (15), we have

exp
(
−5.1× 1011(1 + log(8n))

)
<

71

2k/2
,

which leads to

(k/2) log 2− log 71 < 5.1× 1011(1 + log(8n)).

Combining the above inequality with (13), we get

(k/2) log 2− log 71 < 5.1× 1011
(
1 + log

(
8× 2.1× 1015k4(log k)3

))
,

which implies k < 3× 1014. Hence, by (13), we have that

n < 2.1× 1015(3× 1014)4(log(3× 1014))3,

so n < 7× 1077. To sum up, we record these bounds in the following lemma.

Lemma 3.3. We have k < 3× 1014 and n < 7× 1077.

3.4. Lowering the bound on k. Next we need to lower the upper bound for k.
For this, we write

Γ := m log 10− (`n+ `(`− 5)/2) log 2 + log(d/9),

and note that (15) implies that

|eΓ − 1| < 71

2k/2
.

Since k ≥ 180 is large, the right–hand side above is smaller than 1/2, so the above
inequality implies that

|Γ| < 142

2k/2
.

In the above, we used the fact that if x and y are real numbers with |ex − 1| < y
and y ∈ (0, 1/2), then |x| < 2y. Dividing the last inequality above by log 2, we get

(16) |mτ −N + µ| < A

Bk
,

where

(17) τ :=
log 10

log 2
, µ :=

log(d/9)

log 2
, A := 205, B := 21/2,

and N := n` + `(` − 5)/2. Since N < 8n, by Lemma 3.3, it follows that N <
6×1078 := M . We need a convergent pj/qj of τ such that qj > 6M . The convergent
p164/q164 has q164 > 7× 1080 > 6M . Furthermore, computing ‖µq164‖ −M‖τq164‖
for d ∈ {1, . . . , 8}, we get that ε > 0.01. By Lemma 2.4, we get that

k <
log(Aq164/0.01)

logB
< 570.

Hence, k < 570. This was if d 6= 9. If d = 9, then µ = 0 and we cannot apply
Lemma 2.4 as ε < 0, so instead we apply Lemma 3.1. Namely, (16) implies

(18)

∣∣∣∣mN − 1

τ

∣∣∣∣ < A/τ

BkN
<

62

N2k/2
.

We need to check that the right hand side above is at most 1/(2N2), which is
equivalent to

(19) 124N < 2k/2.
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Since N < 8n, the above inequality (19) is implied, by invoking (13), by the in-
equality

(20) 124× 8× 2.1× 1015k4(log k)3 < 2k/2,

which holds for k ≥ 200. So, assuming k ≥ 200, we can apply Lemma 3.1. Thus,
m/N = pj/qj for some convergent pj/qj of 1/τ (we keep the previous convergents
since the convergents of 1/τ are, with the exception of the very first one which
is 0/1, the same as the converges of τ). Since qj ≤ N ≤ M < q164, it follows
that m/N = pj/qj for some j ≤ 163. With Mathematica, we computed that
max{aj : a ≤ j ≤ 164} = 5393. Hence, by Lemma 3.1 and (19), we get

1

5395×N2
<

62

N2k/2
,

so

(21) 2k/2 ≤ 5395× 62N < 5395× 62× (6× 1078),

which gives k < 570. Thus, in all cases, we got k < 570.
We can iterate one more time the same program. Namely, feeding k < 570

into (13), we get n < 6 × 1028, so N ≤ 8n ≤ 5 × 1029 := M . We now choose
q := q64 > 4 × 1030 > 6M . For d ∈ {1, . . . , 8}, we compute that ε > 0.08, which
gives k ≤ 230. For d = 9, the inequality (20) is satisfied for k ≥ 200. Thus, by
the previous argument, we get that m/N = pj/qj for some j ≤ 63. We now have
max{ak : k ≤ 63} = 42, and the previous argument gives that the analog of (21) is

2k/2 ≤ 44× 62N < 44× 62× (5× 1029),

which gives that k ≤ 220. Hence, k ≤ 230 holds in all cases. Let us record this
information.

Lemma 3.4. We have k ≤ 230.

3.5. Bounding n. By (13) together with the fact that k ≤ 230, we have n < 1027,
so N1 := `(n−1)+`(`−1)/2 = `n+`(`−3)/2 < 8n < 8×1027 := M . Assume that
n ≥ 100. Since α ≥ α(4) ≥ 1.92, it follows that the right–hand side of inequality
(12) is < 1/2. Putting

Γk := m log 10−N1 logα+ log(d/(9a`)),

inequality (12) shows that

|Γ1| <
512

αn−1
.

Dividing both sides by logα, we get

|mτ −N1 + µ| < A

Bn−1
, τ :=

log 10

logα
, µ :=

log(d/(9a`))

logα
, A := 785, B := 1.92.

Here, we used the fact that 512/ logα < 512/ log 1.92 < 785. For each k ∈ [4, 230],
we generated the convergent p130/q130 of τ := τk. The minimum value of q130

exceeds 1055, so they all satisfy q130 > 6M . Further, their maximum is < 8× 1078.
We checked that for all such k ∈ [4, 230], d ∈ [1, 9], ` ∈ [1, 7] the inequality ‖µq130‖−
M‖τq130‖ > 10−7 holds. Thus,

n− 1 <
log(785× 8× 1078/10−7)

log(1.92)
,
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which implies n < 320. We now computed the amount F
(k)
n · · ·F (k)

n+`−1 (mod 1010)
for every k ≤ 230, every n ≤ 350, and every ` ≤ 7. None of these numbers were
rep-digits with at most 10 digits. Thus, the theorem is proved.
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